Session 12 - Final presentations

The groups present their work

Overview

Topic Duration Notes
Groups finalize models, plan their presentations 60
Group presentations 25 min each (125 min)
Some hints for the final report 20

Presentation content

Important: I do not expect that you already finished every step!

  • We will meet as usual at 8:30. The groups will then have 1 hour to finalize their work and presentations to reach an (interim) result.
  • From 9:30 to approximately 12:00, the groups will present their current progress.
    • Don’t be alarmed: Some guests who are interested in the formalizations will be attending.
    • Please don’t stress too much about the presentation: The goal is not to sell a perfect product. Instead, it should be more like a “workshop insight” — just show what you have done, where you currently stand, and what issues still need to be solved, along with your next steps.
    • Presentation structure:
      1. Present the phenomenon and (verbal) theory on one slide
      2. Show and guide us through the VAST
      3. If available: Present initial formulas and simulations
      4. Identify open questions
    • The actual presentation should take a maximum of 10 minutes so that we have about 10 minutes for discussion and joint reflection.
  • Afterward, I will provide the final information on the term paper, and we will discuss the evaluation.

This time, we will need a bit longer—expect to finish around 12:30 (or possibly a bit later). We will, of course, include breaks.

Final report

Your task is to formalize a psychological theory of your choice. The goal is not (necessarily) to do a complete formalization, but to demonstrate that you understand the methodological steps and that you are able to apply them to a new theory.

Possible Outline of the Final Report

In general: Other meaningful ways of presentation are possible.

  1. Define the Objective
    • The aim of the following work is to formalize an existing psychological theory.
  2. Brief Verbal Introduction to the Selected Theory
    • A justification for your choice is possible but not necessary.
  3. Present Core Constructs of the Theory
    • Both in running text and in the VAST display (but try not to duplicate too much information between text and VAST display)
    • The Construct Source Table goes into Appendix A
    • Justify in your text if you deviate from the original definitions.
  4. Identification of Relevant Phenomena
    • Present a phenomenon to be explained (possibly multiple, but one is enough).
    • Search for at least 1 meta-analysis of your focal constructs
    • Only if no meta-analysis available, or not helpful: Search for 2-3 exemplary primary studies. You do not have to conduct a full-blown meta-analysis.
    • Based on this (limited, not exhaustive) literature: Assess the robustness of the phenomena by referring to the two dimensions of robustness:
      • Strength of evidence
      • Generalizability (cf. UTOS framework)
    • At the end of the section, give a clear answer “The phenomenon can (not) be considered robust because, …”.
    • Note: If your starting point is more the phenomenon (and less the narrative theory), it might make sense to switch sections 3 and 4)
  5. Formulation of the (Proto-)Theory
    • VAST: Relationships between constructs and phenomena.
    • Text: Justification of relationships (with references to the IDs in Appendix A).
    • How does the theory explain the emergence of the phenomena?
  6. Development of a Formal Model
    • Explain if/how the formalized model deviates from the “larger” theoretical model (e.g., narrowing to specific sections, extensions, additional assumptions).
    • Variable Table: Define variables (value range, scale level, anchors).
    • Relationships Table (can also be presented in running text): Define functional relationships (again, with references to the IDs in Appendix A).
      • If a mathematical model is used: maybe include small plots of each relationships.
  7. Evaluation of the Formal Model
    • Simulate a virtual sample:
      • Assume plausible values for the function parameters (one plausible value per parameter is sufficient - no need to fully explore all possible combinations).
    • What should be analyzed?
      • Scatterplot/Boxplot of the simulated raw data (if an experiment is simulated: per condition).
      • Observed effect size.
    • It is okay if inconsistencies or implausible results occur in this check. You do not need to refine the formal model but simply identify the problem.
    • No further sensitivity analyses are required within the scope of the final report.
  8. Discussion: Meta-Reflection
    • From your personal perspective: How did the individual formalization steps work with this theory?
      • Was the original literature helpful/informative?
      • How much did you have to “fill in gaps”?
    • What was particularly difficult?
      • This can be (a) criticism of the selected theory and (b) critique/reflection on the seminar and one’s own skills.

Given the 15,000 character limit (+/- 20%) (including spaces; not including front page, references, and appendices), each of these sections needs to be really short! So do not aim for comprehensiveness, but rather give concise and exemplary demonstration of the necessary steps, without the goal of being exhaustive.

Grading

Whether the final formalization makes sense or the formal model really produces the phenomenon is not part of the grading (because that also depends on the chosen theory). For grading, I only assess whether the methodological steps have been applied lege artis and a coherent report has been written. While grading, I ask myself those questions, for example:

  • Do the steps meaningfully build upon each other?
  • Do the conclusions follow from the presented evidence?
  • Have decisions been made transparent?
  • Is the Github repository well structured?
  • Is the code well documented?

You can see a tentative grading sheet (likely subject to change) here.

LMU specifics (in German)

Format Hausarbeit

  • Schriftgröße 12pt, Zeilenabstand 1.5x
  • 15.000 Zeichen +/- 20% (Zählung inkl. Leerzeichen; ohne Deckblatt, Referenzen und Anhänge)
  • Wenn Sie in papaja/apaquarto/Rmarkdown schreiben, dann ist das exportierte PDF von der Formatierung her gut so wie es ist (Sie brauchen nicht das Deckblatt, Zeilenabstand etc. anpassen).
  • Deckblatt: Titel, Datum, Name, Matrikel-Nr., Name der Veranstaltung
  • Bei papaja/apaquarto/Rmarkdown schreiben Sie Datum, Matrikel-Nr. und Name der Veranstaltung in die author notes.
  • Kein Inhaltsverzeichnis
  • Mindestens 3 Publikationen zitieren
  • Zitate & Literaturverzeichnis nach APA-Richtlinien (6. oder 7. Version)
  • Die Links zu Repositorium mit open code, etc. kommen an den Anfang des Methodenteils

Abgabe Hausarbeit

  • Abgabetermin: 23.3.2025
  • Als PDF-Datei per Email an den Dozenten – Empfang wird bestätigt
  • Man kann zum Zwecke der Anonymisierung 2 Versionen einreichen:
    • Vollständige Version (Dateiname: IhrNachname_Kurztitel_Jahr.pdf) – z.B.: „Schmid_Empra_2020.pdf“
    • Anonymisierte Version, bei welcher der Name auf dem Deckblatt gelöscht ist (Dateiname: Matrikelnummer_Kurztitel_Jahr.pdf)
      • Diese Version wird benotet.
      • Dateiname z.B.:„98234034_Empra_2020.pdf“
      • Das Github Repo als zip-Datei.
      • Sie können in papaja einfach eine anonyme Version erzeugen, indem Sie im YAML mask: yes angeben (siehe hier)
      • Sie können in apaquarto einfach eine anonyme Version erzeugen, indem Sie im YAML mask: true angeben (siehe hier)

Gruppenarbeit / Eigenleistung

Innerhalb der Gruppen kann das gemeinsame Basismodell von allen Gruppenmitgliedern genutzt werden. Die Eigenleistung besteht in folgenden Aspekten:

  • Die Beschreibung des Modells wird individuell geschrieben
  • Das Basismodell wird durch mindestens eine Komponente individuell und selbständig erweitert, z.B.:
    • ein weiterer Mediator oder Moderator im VAST (und entsprechend in den Simulationen)
    • eine neue experimentelle Simulationsbedingung (d.h., es werden andere Settings für die Modellparameter systematisch untersucht, und ob/wann das Phänomen noch vom Modell produziert wird)
    • Ein anderes Phänomen wird untersucht, welches aber auch durch das Modell abgedeckt ist/sein könnte. Das neue Phänomen wird durch eine neue Literaturrecherche (die sich z.B. auf eine andere Metaanalyse bezieht) bzgl. seiner Robustheit evaluiert.